STEEL MANUFACTURING MODEL

Process Modeling and Simulation

Steel Manufacturing

Professor. Dr. Yilmaz Uygun

Group 2: Hala Abuhassan, Alexandra Gkragkopoulou, Joelle Karadsheh, Nada Martinovic
December 3, 2023

Introduction (Alexandra)

The goal of this assignment is to simulate the manufacturing of steel. Steel is mainly used
while constructing buildings, infrastructure, tools, ships, automobiles, machines, appliances
and weapons. The main steps that are involved in the manufacturing of steel are: melting of
scrap, degassing, compact strip production, cold strip milling. Our report consists of a 2D
animation, graphs and diagrams for total production, slab processing time, number of slabs
and coils produced, and a graph showing different products. We also discuss important
parameters of the system, we run an optimization experiment where we change the input rate,
a maintenance model and develop a system dynamics model.

Question 1 (Joelle and Nada)

The model below shows the steel manufacturing plant. Steel is manufactured through
different processes. The steel plant produces galvanized and galvannealed sheets, cold rolled
fully processed sheets, hot rolled plates, and cold rolled full hard sheets).

Steel Manutacturing Plant

@ inputRate
| L Ao 4o o
pp——] | | 3 |
- I B B ——
@ ladlesWeight *f: i N S P 41
1 i ™ ‘ 4 s
| | v | mex || | + R e =T — H
rrrrrrr e d 0B L =
I I I I — |
@ cranesNumber @ @'@ i i i i = [y—
Ll B e —
Cranes o 4> =
00 & =
® coilWeight T} """""""""""""" j g }r?
I 3 — |
® coilsPerLadle L ,,,,,, = i
e 77 R - =
2 probPLICM 1 M =k
I i H | T
#probCR i """"""" | =
I
| =

dmeMezsureiznt EARD Ladlefumsce,

o

,,,,,,,,,

-

Fig.2 Production flow

Question 2 (Hala)

First graph: Total production

In order to visualize the total production at the steel plant we added a time plot graph and
named it“Total Production”. We used a time plot specifically to show us the total production
over time. It is very important to note that the total production also considers the amount of
slab produced in earlier stages as well as coil production, hence our total production consists
of (steel slabs, Coil, hot rolled HR, cold rolled hard sheet, GIGA, CRFP, HRP, CRFH).

Total production = amount produced * LadlesWeight

The amount of each product produced is taken from the output. Hence, in the time plot and
under “value” we add up all the outputs for all the products and then we multiply them with
the ladles weight which is in tons. The graph on the right shows an increasing graph because
as more time passes we are producing more products.

LI Properties &5 o7 o

[&# plot - Time Plot

MName: [Jignere []Visible on upper agent [| Lock

~ Data

® Value () Data set

Title: |Tota\ Preduction

Value: (outputHR + outputHRP+ cutputCRFH+ outputCRFP+ outputGIGA)*ladlesWeight
Point style: v

Color: ellowGreen v

Line width:

o || 22

v Data update

Fig.3 Time plot properties

15,000
10,000

5,000

50 100

Total Production

Fig.4 Amount produced in tons over time

Second graph: It is for the slab processing time, for this we need to consider the
timeMeasureEnd as it measures the time. We use
the histogram graph and change the properties in
it. We put “timeMeasureEnd.distribution” and we zo%
name the graph “Slab processing time”. Finally,
we notice that the mean slab processing time is 20%

3.6.
10%

[T Properties &2 M ¢ =08

iliy, chart - Histogram 0%

Mame: [ignore [Visible on upperagent [Lo

[AShow PDF [Show CDF [] Show mean . Slab processing time 2.6
« Data

3.2 3.4 3.6 3.8 4

Title: | Slab processing time |

Histogram: timeMeasureEnd.distribution

PDF color: v

& Add histogram data

» Data update

» Appearance

Fig.5 Histogram Properties Fig.6 Distribution slab processing time

Third graph: Number of slabs produced

First, we create a bar chart and assign it to the name “Number of slabs produced” Then we set
the value in the data to “LadleToSlab,count()” This will count the slabs at the sink because
that is the total amount of steel slabs produced. The number of steel slabs produced is 15,373
and that is the amount reached when the max number of agents is reached.

Itk Number_of slabs_produced - Bar Chart

Mame: | Numnber_of_slabs_produce| [Jignore []Visible on upper agent
[lock
Scale @ Aute O Fixed (O 100%

] 1

20,000
(® Update data automatically
(O Do not update data automatically
5000 | oo
@) Use model time () Use calendar dates
First update time: hd 0000 | [
Recurrence time: v E.000 | [

~ Data

Title: | Number of slabs produced
Color: [damkOmnge] v

Value: | LadleToSlab. count()

Mumber of slabs produced 15373

e

b Appearance

Fig .7 Bar chart properties Fig. 8 Total amount of slabs produced

Fourth graph: Number of coils produced

we add another bar chart. This time we want to count the number of coils produced. Hence,
we consider the sink “SlabToCoil” where the total amount of coil produced is collected. We
use a count function to measure the total number of coils produced in this steel plant. We
notice that the total amount is 15,364.

e ep— e o

Ik chart1 - Bar Chart

Name: [Dignore [Visible on upper agent
[teck
Scale: @ Auto (O Fixed (O 100%

From: | @ To: 1

(®) Update data automatically
(0 Do not update data automatically

(® Use model time () Use calendar dates

First update time: = e v
Update date:

Recurrence time: 2 v
~ Data

Titles | Number of coils produced

Color: | ESUMOERIN]

Value: 51abToCoil.count()

(3

Fig.9 Bar chart properties

20,000
156,000
10,000

5,000

@ Number of coils produced 15,364

Fig.10 Bar Chart for total amount of coils produced

Fifth graph: Variations of products at the plant

The given flow chart in the assignment shows the total amount of products produced at the
steel plant. However, it is still better to visualize them. Therefore, we added a bar chart and
we added 5 products (HR,HRP,CRFH,CRFP,GIGA). Each has a different color to help
distinguish between them, the values are different according to the product produced. Notice
how at the beginning of the simulation, the amount of products produced is 0 since there is a
process that needs to happen before it starts producing the products, but as they move from
the conveyor, the products will start to show in the graph and the graph displays the following
numbers.

[Properties 73 []

ik chart2 - Bar Chart
urrence time: 2 [200
~ Data
. o0
tor. | INEETNETEN v
uuuuuuuuuuuuu 200
. 100
aaaaa [e—

aaaaa @ HR 377 HRP 366
aaaaaaa CRFH 360 @ CRFP 352
@ GIGA 374

Fig.11 Bar Chart Properties Fig.12 Different products at the plant

Question 3 (Joelle)

To show the changes in different stages and highlight the different results from various
processes, we included two statecharts in this model: one for the ladle and another for the
coil.

1. Ladle state chart

To enhance the ladle diagram in our model, we introduced an oval shape at the top. This oval
alternates between the colors blue, cyan, dodger blue and yellow Green, representing
different phases the ladle undergoes. Our statechart outlines four main states: Delivery, Scrap,

Molten Steel, and Post-Degassing, with transitions between these states initiated by specific
messages.

The statechart starts in the Delivery state, moving to Scrap upon receiving the "delivering"
message. This transition is programmed in the EAF 1 and EAF_2 blocks, where the function
‘send("delivering", agent)® is activated in the On Enter section. Similarly, the Molten Steel
state is initiated by the "melting" message from the LadleFurnace 1 and LadleFurnace 2
blocks.

The final phase, Post-Degassing, is reached from the Molten Steel state through a transition
triggered by the "degassing" message. This message is sent by the RH_Plant block using the
function ‘send("degassing", agent)" in its On Enter section.

To visually track these transitions, we implemented the “oval.setFillColor(Color)" function in
the Entry and Exit actions of each state. This ensures the oval changes color corresponding to
each state transition, vividly illustrating the progress through each step of the process.

Scraplnput timeMeasureStart EAF_1 LadleFurnace_1
o+ [Emm
\RH_%M timeMeasureEnd
e
Scraplnput! ~ timeMeasureStart1 gaf 2 Lﬂdlsﬂm;j/ by
L
. .
Fig.13 EAF_1 and EAF_2 actions
Scraplnput timeMeasureStart EAF 1 LadleFurnace_1
[ammt—
RH_Plant timeMeasureEnd
28 P
’\

Scrapinputi timeMeasureStart1 af » LadleFW
o+ [

Fig.14 LadleFurnace_1 action

Agent location (delay):

» Priorities / preemption
- Advanced

Customize resource choice:

Resource selection:

Queue: exit on timeout:

Queue: enable preemption:

Restore agent location on exit:

Force statistics collection:

~ Actions

On enter:

On seize unit:
On enter delay:
On at exit:

On exit:

On remove:

Ay s v

» Priorities / preemption
- Advanced

Customize resource choice:

Resource selection:

Queue: exit on timeout:
Queue: enable preemption:

Restore agent location on exit:

Force statistics collection:

Return home' usage is:

~ Actions

On enter:

On seize unit:
On enter delay:
On at exit:

On exit:

On remove:

-0

= Off (chooses some matching unit) V.
|

=0

-

-0

send("delivering", agent)

- | npuladierumace v | s e

=0
= Off (chooses some matching unit) Vv
-0
-0
==
-0

~ counted as ‘busy’ v

send(“melting", agent)

Type: = (® Specified time
O Until stopDelay() s called
Delay time: <3| triangular(4*ladlesheight, 4. minutes v
< >
Scraplnput timeMeasureStart AR 1 |adleFurnace_1 Maximum capacity: ~
> o
S ? -n@‘ Agent location: = [finputRH v & &
RH_Plant timeMeasureEnd
2% 'Q/ ~ Advanced
Scraplnput1 ~ timeMeasureStartl EAF 2 LadleFurnace Eh Forced pushing: =
07¢"7@-— Restore agent location on exit: =
Force statistics collection: =0
~ Actions
On enter: | send("degassing", agent)
On at exit:
On exit:
On remove:
~ Advanced
. .
Fig.15 RH_Plant action
4 transition - Transition X transition1 - Transition

Name: [1show name [| Ignore Name: LI show name [ignore

Triggered by: | Message v Triggered by: | Message hd

Message type: | Object v Message type: | Object v
Fire transition: () Unconditionally

Fire transition: () Unconditionally (®) On particular message

On particular message
@ p 9 O If expression is true

O If expression is true

: : Message: "melting"
Message: "delivering"
Action:
Action:
Guard:
Guard:
» Description

» Description

Fig 16+17 Transition

e

i\ transition - Transition 4 transition2 - Transition

Name: I Show name [] Ignore Name: [IShow name [] Ignore

Triggered by: Message v Triggered by: | Message v
Message type: Object v Message type: |Object v
Fire transition: () Unconditionally Fire transition: () Unconditionally
(® On particular message (®) On particular message
O If expression s true O expression is true
Message: delivering Message: "degassing”
Action:
on Action:
Guard:
Guard:
» Description
» Description

Fig 17+18 Transitions

O Delivery - State

Name: ‘ Delivery ‘ Show name [_]Ignore

Fill color: v

Entry action: | oval.setFillColor(blue)

Exit action: oval.setFillColor(blue)

Description

Fig.19 Example of State

O _i statechart
=
ﬁ

=2

AfterDegassing

Fig.20 state chart

L
—

2. Coil state chart
Here, we are adding colors to the 3D boxes in our model using a statechart with 6 states and 5
transitions. These transitions are activated by 'String' type messages, set up so that the Fire
transition responds to specific messages. The statechart begins at the "Coils" state and
includes two transitions activated by messages, leading to either the HR or HRP states. The
transition between “Coils” and “HR” is a message and in particular message “HR”, As for the
transition between “Coils” and “HRP” it is also a message and in particular message “HRP”.
As for the main chart I put “send("HR", agent)” on enter action in storingDelay. We added
“send("HRP", agent)” on enter action in PLTCM. From HRP, transitions lead to either GIGA
or CRFH states. For the transition between HRP and GIGA it is a message with one
particular message “GIGA” and the same logic for the transition between HRP and CRFH

with the message being “CRFH”. As for the main chart I put “send("GIGA", agent)” on enter
action in CAL and I added “send("CRFH", agent)” on enter action in BAF. The final
transition moves from CRFH to CRFP with a message transition of “CRFP” and
“send(“CRFP”, agent)” as an on enter action in SPM.

The statechart uses colors like powderBlue,mediumPurple,orchid,salmon,lightGrey and
yellowGreen. We apply these colors using the ‘shapeBox.setFillColor(Color)" function in
each state's Entry action. This setup ensures that the box colors change dynamically,
reflecting the current process stage of the steel and differentiating various outputs by color.

4 transition - Transition
Name: [] Show name [] Ignore
Triggered by: | Message v
Message type: Object v

Fire transition: (O Unconditionally
®on particular message

O If expression is true

Message: "HR"
Action:
Guard:

» Description

Fig.21 Transition example

*2 SPM - Service 2 CAL - Service
Send seized resources: R] Send seized resources: L
Agent location (queue): = |@ BAFCoils v | &R & Agent location (queue): = B InputPLTCSM v | & ©
Agent location (delay): ~ HlnputSPM v (R O Agent location (delay): = W InputCAL v | & 3
» Priorities / preemption Priorities / preemption
~ Advanced Advanced
Customize resource choice: = Customize resource choice: =0
Resource selection: = | Off (chooses some matching unit) v Resource selection: = Nearest to the agent v
Queue: exit on timeout: = Queue: exit on timeout: =[]
Queue: enable preemption: = Queue: enable preemption: =0
Restore agent location on exit: = Restore agent location on exit: =
Force statistics collection: =0 Force statistics collection: =0
- Actions Actions
m n On enter: d("GIGA", t
On enter: send("CRFP", agent) n enter send(agent)
. - On seize unit:
On seize unit:

On enter delay:
On enter delay: n enter delay:

) On at exit:
On at exit:
. On exit:
On exit:
On remove:
On remove:
T =
2 PLTCM - Service
: Send seized resources: |
3 BAF - Delay
Agent location (queue): = 2. path7 v B O
Name: Show name [JIgnore
Agent location (delay): = 0 InputPLTCSM v | & ©
Type: = (@ Spedified time
O Until stopDelay() is called > Priorities / preemption
Delay time: 2| triangular(42, 47, 55) hours v wavanced
_ Customize resource choice: =
Capacity: =23
Resource selection: ~ | Off (chooses some matching unit)
Maximum capacity: = []
Queue: exit on timeout: =0
Agent location: = i "o
9 BAFColls v | & & Queue: enable preemption: =0
+ Advanced Restore agent location on exit: =
Forced pushing: =
orced pushing o Force statistics collection: =0
Restore agent location on exit: = =
- Actions
Force statistics collection: = On enter: send("HRP", agent)
~ Actions On seize unit:
On enter: send("CRFH", agent) On enter delay:
On at exit: On at exit:
On exit: On exit:
On remove: On remove:

* Advanced

Q© storingDelay - Delay

Name: storingDelay Show name [Ignore

Type: = @ Specified time
O Until stopDelay() is called

Delay time: “2| triangular(0.5, 1, 1.5) hours v

Maximum capacity:

Agent location: = T receivingNode v | &

~ Advanced

Forced pushing: =0

Restore agent location on exit: =

Force statistics collection: =0
~ Actions

On enter: = send("HR", agent)

On at exit:

On exit:

On remove:

- Advanced
Agent type: [il v
@ single agent O Population of agents

Model/library: Process Modeling Library (change..)
Visible: @ ves

[visible on upper agent
f o

Figs.22 till Figs 26 are all on enter actions

O HRP - State

Home: ishowname L gnore Fig.27 HRP state example
Fill color: _ v

Entry action: = shapeBox.setFillColor(orchid)
Exit action: shapeBox.setFillColor(orchid)

» Description

.';. connections

"9 statechart

Pl
-

EED

Fig.28 State charts

G putRate

—0
0 25

@ adiesweight
37

Cranes
3%
ha%
5/10
coilWeight
G givieig
(¢} goilsPerLadie

GgrngLTCM

@BrgbCR

Steel Manufacturing Plant

Fig.29 Simulation running

Question 4 (Nada)

There are seven essential parameters in our model. They are all represented in the following
pictures.

1.

inputRate - with a default value 2.5 and type double. It controls the rate at which the
scrap metal is entering the model and is directly connected to the production rate.

cranesNumber- represents the total number of cranes in the model, with the value of
10

ladleWeight- represents the ladle’s weight. The default value is 40.
coilWeight- weight of coil has a default value of 10.

coilsPerLadle - the amount of coils made per one ladle. The type is double and is
connected to ladlesWeight / coil Weight.

probPLTCM - represents the probability of going to the production of hot rolled steel
coils and the rest goes to cold mill. It is also type double and has 0.5 as a default
value.

probCR-by default it is 0.5 probability and determines the specific selectOutput which
shows which output is going to be produced.

@ inputRate - Parameter

Name: inputRate Show name [] Ignore

Visible: @ ves

Type: double v
Default value: | 2.5

[l System dynamics array

~ Value editor

Label: inputRate

Control type: Text v
Hide conditions:
Parameter Condition Value
L&l
~ Advanced

@ Static O Dynamic O Action
O System dynamics units:
Save in snapshot

On change:

~ Description

Fig.30 Input Rate

@ ladlesWeight - Parameter

Name: ladlesWeight Show name [_] Ignore

Visible: @ ves
Type: int v
Default value: | 48

] System dynamics array

~ Value editor

Label: ladlesWeight

Control type: | Text v
Hide conditions:
Parameter Condition Value
Ll
~ Advanced

@ Static O Dynamic O Action
1 System dynamics units:
Save in snapshot

On change:

~ Description

Fig.31 Ladles Weight

@ probCR - Parameter

Name: probCR Show name [_| Ignore

Visible: 9 ves

Type: double v
Default value: ~ ©.5

] System dynamics array

~ Value editor
Label: probCR
Control type: | Text v

Hide conditions:

Parameter Condition Value

@

~ Advanced

@ Static O Dynamic OAction
] System dynamics units:
Save in snapshot

On change:

~ Description

Fig.32 ProbCR

@ probPLTCM - Parameter

Name: probPLTCM Show name [Ignore

Visible: @ ves
Type: double v
Default value: ~ = ©.5

] system dynamics array

~ Value editor

Label: probPLTCM

Control type: | Text v
Hide conditions:
Parameter Condition Value
@
~ Advanced

(@ static O Dynamic O Action
O System dynamics units:
Save in snapshot

On change:

~ Description

Fig.34 probPLTCM

2 coilsPerLadle - Parameter

Name: coilsPerLadle Show name [_| Ignore

Visible: 9 ves
Type: double v
Default value: — ladlesWeight/coilWeight

[[] System dynamics array

~ Value editor

Label: coilsPerLadle
Control type: | Text v

Hide conditions:

Parameter Condition Value

Lt

~ Advanced

@ Static O Dynamic O Action
O System dynamics units:
Save in snapshot

On change:

~ Description

Fig.33 Coils Per Ladle

@ coilWeight - Parameter

Name: coilWeight Show name []Ignore

Visible: ® veg
Type: int v
Default value: — 1@

] System dynamics array

* Value editor

Label: coilWeight
Control type: | Text v

Hide conditions:

Parameter Condition Value

(]

~ Advanced

@ Static O Dynamic O Action
[l System dynamics units:

Save in snapshot

& cranesNumber - Parameter On change:
Name: [Ishow name [Jignore - Description
Visible: @ ves
Type: int b
Default value: —~ | 10

O System dynamics array

Fig.35 Coil Weight

Control type: | Text v

Hide conditions:

Parameter Condition Value

il
- Advanced

@ Static O Dynamic O Action
(] System dynamics units:
Save in snapshot

On change:

~ Description

Fig.36 Cranes Number

Question 5 (Alexandra)

For this task, we will try to make an optimization of our model to increase the production rate
by changing the input rate. We create a new model- optimization experiment and set the
number of iterations to 500. In the main, we create a new variable ‘totalProduction’ and in the
function body we enter: return (outputHR + 2*(outputHRP + outputCRFH + outputCRFP +
outputGIGA))*ladlesWeight; Then, in the optimization we set the objective function to
root.totalProduction() and select maximize.

Fig.37 totalProduction Function

'|| @ totalProduction - Function

Name: | totalProduction | [/ Show name [Jignore

Visible: @ no
O Just action (returns nothing)
® Returns value

Type: |double v
- Arguments

Name Type

~ Function body

return (outputHR + 2*(outputHRP + OUtPUtCRFH + OUtPUtCRFP + outputGIGA))*ladleskeight;
» Advanced
» Descrintion
[Properties =

% Optimization1 - Optimization Experiment

A A
Name: Optimization1 [ignore

Top-level agent: Main v
Optimization engine: Genetic v
Objective: O minimize ® maximize

root.totalProduction()

* Number of iterations

@ Fixed: [500
Infinite
Maximum available memory: | 512 v Mb

Create default Ul

~ Parameters

Parameters:

Value

Parameter | Type Min |Max [Step |Su..ed
inputRate discrete 0.5 10 0.5
ladle...ight fixed 40

cran..ber fixed 10

coilWeight fixed 10

coils...Ladle fixed ladlesWeight/coilWeight
pro..TCM fixed 05

probCR fixed 0.5

BadQuality fixed 0.05

reworkTime fixed 3

MTTF fixed 5

MTTR fixed 1

MTTM fixed 4

numb..nes fixed 10
~ Model time

Stop: Stop at specified time Vv

Start me: [0 | Stop time:

00:00:00 5 00:00:00 &

Fig.38 Optimization Parameters

Running the model, we observe that with the best input rate equal to 7, we get a maximum
total production of steel equal to 56,480 with 17 iterations.

SteelManufacturingPlant1 : Optimization1

Current Best

Iterations completed 22 17

Objective: T 48,200 56,480 50,000

Parameters Copy best

inputRate 55 7 25000
ladlesWeight 40 40 30000

cranesNumber 10 10

coilWeight 10 10
collsPerLadie 4
Current @ Bestinfeasible @ Best feasible
probPLTCM 05 05
probCR
BadQuality 0.05 0.05
reworkTime
MTTF
MTTR 1 1
MTTM 4 4

numberofcranes 10 10

[] A Finished [1

Fig.39 Optimization Result Model

Question 6 (Nada+Alexandra)

We need to simulate a breakdown and maintenance system of only 2 cranes. A breakdown of
the crane may happen every 5 days on average and there is maintenance happening regularly
every 4 days. We added three states, InOperation, maintenance and failure. We also added the
parameters MTTR, MTTM, MTTF and numberofcranes as shown in the figures below. From
InOperation to maintenance a transition was added with a rate of 1/MTTM per day and an
action of Cranes.set_capacity(2). From maintenance to InOperation it was a rate of I/MTTR
per day. From inOperation to failure a transition with a rate of I/MTTF per day was added
with an action of Cranes.set capacity(2) and lastly the transition from failure to inoperation it
was a rate of I/MTTR per day. As for the states we put the capacity of In Operation as the
total number of cranes by setting an action of Cranes.set_capacity(numberofcranes).

Tstatecharﬂ

@ MTIR
Maintenance @MTTM
b @ MTTF

e
* numberofcranes
“

= FlupEiues v =

© InOperation - State

Name: InOperation Show name [] Ignore
Fill color: v

Entry action: | Cranes.set_capacity(numberofcranes)
Exit action:

» Description

I Properties & ? g = o
© Failure - State
Name: Show name [] Ignore
Fill color: v
Entry action:
Exit action:
» Description
T Properties = s — O

© Maintenance - State

Name: Maintenance Show name [] Ignore
Fill color: v

Entry action:
Exit action:

» Description

Fig 40 to Fig 43 State chart representing the maintenance system and each of the states
with their specific colors

@ MTTR - Parameter

Name: Show name [] Ignore

Visible: ® ves

Type: double v
Default value: ~ 1

[System dynamics array

~ Value editor

¥ MTTF - Parameter

Name: MTTF
Visible: @ ves
Type: double v

Default value: | 5

O System dynamics array

“Value editor

Show name D Ignore

Label: MTTF
Label: MTTR
Control type: Text v
Control type: | Text v
Hide conditions:
Hide conditions:
Parameter Condition Value
Parameter Condition Value
=]
L
- Advanced

~ Advanced
@ static O Dynamic O Action
[[] system dynamics units:
Save in snapshot

On change:

~ Description

@ MTTM - Parameter

Name: Show name []Ignore

Visible: ® ves
Type: double v
Default value: ~ 4
[System dynamics array
~ Value editor
Label: MTTM
Control type: | Text v

Hide conditions:

Parameter Condition Value

>

~ Advanced
@ static O Dynamic O Action
[system dynamics units:
Save in snapshot

On change:

- Description

Fig 44 to Fig 47 Parameters

@ static O Dynamic O Action
[} System dynamics units:
Save in snapshot

On change:

- Description

@ numberofcranes - Parameter

Name: numberofcranes

Visible: ® ves

Type: int v
Default value: ~ | 1@

[system dynamics array

~ Value editor

Label: numberofcranes

Show name [] Ignore

Control type: | Text v
Hide conditions:
Parameter Condition Value
<@
~ Advanced

@ static O Dynamic O Action
[[] System dynamics units:
Save in snapshot

On change:

~ Description

Fig 48 (Transition 3)-From InOperation to Maintenance:

< transition3 - Transition

Name: []Show name [] Ignore

Triggered by: Rate v
Rate: “ | 1/MTTM per day v
Action: Cranes.set_capacity(2)
Guard:
» Description

Fig 49 (Transition 4)- From Maintenance to InOperation

% transitiond - Transition

Name: [1show name [] Ignore

Triggered by: | Rate v
Rate: < 1/MTTR
Action:
Guard:

» Description

Fig 50 (Transition 2) from InOperation to Failure:
T Properties £

{ transition2 - Transition

Name: D Show name D Ignore

Triggered by: | Rate v

Rate: ~X 1/MTTF

Action: Cranes.set_capacity(numberofcranes - 2)
Guard:

+ Description

Fig 51 (Transition 5) From Failure to InOperation

% transition5 - Transition

Name: D Show name D lgnore

Triggered by: | Rate v
Rate: < 1/MTTR
Action:
Guard:

per day ¥

B

per day v

per day v

Question 7 (Hala)

For this question, we need two flows, one for the quality check and the other for reworking.
The total amount of slabs are entered into the flow, we use a variable called “Total Slabs” and
give it a function “LadleToSlab.count()”, because we want it to count all slabs produced in
the steel plant. Only 5% of the total amount of slabs are counted as bad, therefore we set a
parameter called “BadQuality” and we set it to be double, and 0.05. Quality check is the

inflow of “total slabs* bad quality”.

e_‘BadQuality e__!'ewo rkTime
™~ ~,
\ \
fualityCheck badSlabs— fewerking refurbishedSlabs
L - L -
3e X > X >

Totalabs

Fig 52 System dynamics model

Fig 53 Varibale counting slabs

@ reworkTime - Parameter

Name: Show name [] Ignore
Visible: @ ves

Type: double v

Default value: ~ | 3

O System dynamics array

~ Value editor

e m——

© TotalSlabs - Dynamic Variable

Name: |T0taISIabs

[Show name [lgnore [Visible on upper agent
Visible: (@ vyes
Color: Default W

[l Array ™ Dependent []Constant

TotalSlabs=
LadleToslab. count()

» Array dimensions

@ BadQuality - Parameter

Name: BadQuality Show name []Ignore
Visible: @ ves

Type: double v

Default value: ~ | ©.85

] System dynamics array

~* Value editor

Fig 54 - 55 Fixed Parameters for rework and bad quality

The stock for badSlabs is 0 at the beginning since no bad slabs are entered but as the
simulation starts, the stock will start to get filled. The bad slabs are checked and then will go
to rework, rework takes 3 hours, so the parameter is set to 3 and our model time units are in
hours. Reworking is the inflow of only bad slabs and the time it takes 3 hours to fix them,
hence reworking is calculated as “bad slabs/ reworkTime”.

All parameters and the variable were joined by links to the flow.

@BadQuahty @reworkT\me
0:05 3

QualityCheck badSlabs reworking refurbishedSlabs
3.8 9192 3.064 24123

TotalStabs
76

Fig 56
Bonus question (Hala+Joelle):

To extend our model with more parameters and feedback loops, we decided to turn slabs to
steel plates. We will only need good slabs for that, therefore we will take 90% of the good
slabs produced and we will take 35% of the number of refurbished slabs produced and put
them in our stock. Only 50% of the stock will be used to produce the plates.

We add a flow connecting before quality check, it will take the total amount of slabs
produced and then moves through a flow that takes the 90% as good slabs produced, keeps
them in inventory which is the stock here, and then we added another flow after refurbished
slabs, the flow will take only 35% of refurbished slabs, the parameter of
“RefurbishedToStock™ is set to 0.35. The amount is also added to the stock.

Finally we added a final flow from the stock to produce the steel plates, we are not using our
whole stock to produce the steel plates but rather only 50% of it, hence we set the parameter
“GoodToPlates” to be 0.50.

StealPlates

3

flow2 (@ GoodToPlates
How [flow
T Y
=<
(P GoodCuality Stock
III
|
[(@ reworkTims
| \\
II \'u
\ \
CheckGoodSlabs % | GoedSlabs QualityChack badSlabs e
Ly] - X - R ll o]
£ > & > &
+ Fal /
\ /(@ BadQuality
/
\ /
\ Iy
Y #
\
/ ’d

\\ s
-, Tct‘?l__S_I_FE‘-"

\0_.

Fig. 57 Extended Model

SteelPlates
—H3.171

(# RefurbishedTaStock

flowr1
1115 (% RefurbishedToStock
= 0.35

~—

', | [efurbishedSlabs
=185

flow2 . GoodToPlates
3c-.96'sj“j_ 635
flow :: H‘ -
———a 36067 N
G GgodQuality Stock.
@.gewurk‘l’lme
CheckGoodSlabs ' | BoodSlabs CQualityCheck badSlabs— working
4 41075 205] A J808)
[Ak
| /" BadQuality
- 0.05
Totaisiabs

Fig. 58 Simulation of Extended Model

The simulation shows that only 90% of total slabs are considered to be good and will be
moved to the stock, the amount of refurbished slabs that have finished with rework and will
go to the stock is only 35%. Finally, the model shows that only 50% of the stock will be made

into steel plates.

All necessary parameters are equations for the flow of the extended model are provided

below

@ GoodQuality - Parameter

Marme: |Gu:n:n:|£1ua|it_~,r | [] Show name
Dlgnure

Vicible: (@ ves

Type: deuble W

Default value: —, .96

[] System dynamics array

@ RefurbishedToSlabs - Parameter

Mame: |RefurbishedTDSIahs | [] Show name
|:|Igr1|:|re

Visible: (@) yes

Type: double W

Default value: =, @.35

[System dynamics array

@ GoodToPlates - Parameter

Mame: |GDDC|TCIF'|EtE5 | [+] 5show name
[lgnore

Visible: @ yes

Type: double “

Default value: =, @.58

[] System dynarmics array

&> flow - Flow

Mame: | flow

[#]1Show name [Jlgnore []Visible on upper agent
Visible: (@ yes

Color: Default v

[JArray []Dependent []Constant

flow=
GoodSlabs*GoodQuality

cz> flow1 - Flow

Mame: | flow1

[#1Show narme [Jlgnore []Visible on upper agent
Visiblee (@ vyes

Color: Default ¥

[JArray []Dependent []Constant

flow1=
RefurbishedToSlabs*refurbishedSlabs

> flow2 - Flow

Mame: | flowa

15how name [Jlgnore []Visible on upper agent
Visibles (@ yes

Coler: Default v

[JAray []Dependent []Constant

flow2=
GoodToPlates*stock

Fig 59-64 parameters and flows added to the extended model

Conclusion (Nada)

In this assignment, we combined all of the previously learned skills in AnyLogic software,
from building the model to making state charts. It represents the whole process of steel
manufacturing and simulates the organizational process of a steel factory, with all of its main

parameters.

